The Instant Assembler

Assembly Language Development System
For the TRS-80

Written by John Blattner

Mumford Micro Systems
PO. Box 400, Summerland, California 93067
(805) 969-4557

IABLE OF CONTENTS

Directory of the Diskette ...ccceceveccvesccsccccesccccscccscecscsvocne
Introduction .0..5‘..0...0Dl..l...l.0l.'.......'....0....0.0....0..0!
Preview of Instant ASSembler .c.ccccccceeccccccceccossasccnanccsnes
'“ F‘.tu"a Or version 2.1 X E R EENERENX NN NN N NI NN NN N RN NNNNNN N NN NN NN]
uh‘t .n "“-bler D“a ® 0000000 000 0000000000080 000000000000000000000

P‘rt I. rh' ‘mnbler 0000000 000000000000 00600060000000000000000000000 0
S.otion 'o ‘mnblel' Cmnds 0000 000000000000000000006000000000000
1.'. c“pa‘ns ‘nd Editim 90000 0006000000000 000080080000000600000 6
CP, ED and Entering Line Numbers, CC
1.2, Inael'ting, Delotins’ and “ov‘n! A K |
1S, DL, DM, MB
’03_0 Listing P £ |
LC, PC, LL, PL, PR, LI, PI, LE, RE, LS, PS
1.“. T‘” Input,output‘.......‘................11
WS, VS, RS, WO, WE, RE
1.5. Disk Input/outp“t e0essscaccccsscsssssscsccscsccccccscecscsseld
0s, IN, MG, 00, OE, 1E
1.6. Miscellaneous cecccecacssccecsccsssscccsssonsossacavsccssccsell
AM, RO, FR, DI, KL, EX, MD
Section 2. Example of the Assembler in Action cccccoccccecccceceeed3
Section 3. Inside Instant Assembler - 4
Part 1II. The Debugger tecscsccscscsscccsscscccsesssnccscssccasssccsccccell
s.ction “. m°r°mm cmands'......'......................30
hedo St.epping, B"akp°1ntin8. and Executing g {1
Sp, XC, BD, RN, BK, RB, SB, JP, CL
4.2, 8egiater and Memory Display eeecccccsssscsaccsesssscesasnce3l
RG, MM, AS, P1, P2
3.3. Utilities .000.000.0nloooo.o‘.oooo..ooooto..-0..00......0.36
FN, DS, HD, DH
4.4, Symbolic Disassembly and TranSfer cccceccccccossceccccsecccs3l
SD, AD, 1A
“.5. Ta” and Printer comnda .'........‘.....................38
TP, VF, DP
Section 5. Example of MicroMind in Action ccccvccocccccscccoccceaclid
s'ction 6. Inaid. meromnd ..-....'............................l.uz
Part III' The Limins Loaders 0.0.00.0000l.OI00.0000..00000'.0..00.‘0"“
Section 7. Linking Loader Commands ..ccceoccccoscccsscnsscssonscesslili
Lp, cL, SY, pPM, 00, TP, VF, JP
Section 8. Example of Linking Loader in Action cccececccccacccoseslid

OO EwwwnN

Appendix 1. Legal Instructions for Instant Assembler 2.1 coccccsceses5l
A’p‘ndix 2. smal‘y of Assembler Commands ..ccccceccsccnssasscscscsses2
Ap”ndix 3. source code EntryO.l........'.............l.....53
Appeudix 4, Editin‘ Procedures ..ccccecececsccscsesccscccscssccscessesdll
Appendix 5. Ent.rin‘ Line Numbers and Addresses ccccccvecccccccescsecedS
Appendix 6. Parameter Locations and Meanings .ceecceccscccacsavsccsces5b
Appendix 7. Summary of MicroMind and Linking Loader Commands .c...c..«57
Appendix 8. Adaptina to EDT“M ..I".l.......C........Q.........'.."68

Index O.IQI.C....C...‘...........C......'0.....‘l...l........0..'.0'.63

Page 1

DIRECTORY OF THE DISKETIE

Your Instant Assembler diskette contains six command files, whose names and
functions are:

DSKIAS/CMD =~ Disk Instant Assembler and debugger package.
DSKLLBY8/CMD -~ Bottom-Up Linking Loader for usera with §8K RAM.
DSKLLB32/CMD -- Bottom-Up Linking Loader for users with only 32K RAM.
DSKLLT/CMD -~ Top-Down Linking Loader.

MICROM/CMD - Relocatable, stand-alone version of the single stepping
debugger, including a printing disassembler.

IASTRF/CMD == A three-byte program with the sole purpose of providing a
nondestructive reentry to Instant Assembler.

The disk is formatted for the current version of TRSDOS for your machine,
If you have two drives, you may put this disk in drive 1 and your TRSDOS
compatible operating system in drive 0. To load and execute one of these
prograns, simply type the name as given above and hit ENTER.

If you have only one drive, you will need to use a different procedure. The
Instant Assembler disk has a special structure that will allow you to copy the
prograns on it to a TRSDOS system disk of your own., To do this, use the
following step-by-step procedure:

1) Put a current TRSDOS system disk in drive 0 and hit RESET.

2) When the DOS READY prompt is displayed, remove the TRSDOS disk, insert the
Instant Assembler disk, and hit RESET again.

3) The disk should ®"boot up™ with our sign on message. This message will tell
you which version of TRSDOS it is designed to work with, If the system disk
you are using is not the same type, put the correct system disk in drive O
and go back to step 1.

4) The first program name will also be displayed and you will be asked to put
your system disk back in drive O.

5) Put y:::ksyaten disk in drive 0 and enter W to write the program onto your
own .

6) You will then be instructed to put the Instant Assembler disk back in drive
0 to copy the next program. Repeat this sequence until all programs have
been copied onto your system disk.

Page 2

ANTRODUCTION

Preview of Instant Assembler

Disk Instant Assembler is a powerful, disk-based asssembly system for the
TRS-80 Model I or Model III. Its unique design has the object of increasing
your productivity as a Z-80 assembly language programmer. Among its dozens of
convenient features, the following stand out:

(1) Immediate assembly, and immediate detection of most potential errors, as
the lines of symbolic assembly language code are entered.

(2) A compactly encoded source format that provides a 2-1/2 to 1 storage
advantage (both in memory ard on disk) over the standard source code format.
For example, all the source code for all the modules in the Instant Assembler
package fits on one 35-track, single density disk; the same source code in
standard (EDTASH) format would require three such disks.

(3) Production of independently written, relocatable code modules that can
be linked by the Linking Loaders (included in the package).

(4) In-memory assembly and immediate debugging with the built-in debugger,
featuring single-stepping with full register displays.

Much thought and hard work have been invested in this new version of the
highly acclaimed Instant Assembler to make it especially easy to use -- once
you have learned how. Yet, the program is so packqd with fleatures that it will
take some time to learn to exploit all its strengths, You will find the
learning easier if you have had previous experience with an assembler such as
EDTASM (the TRS-80 Editor/Assemdbler). In any case, it is assumed that you have
(or will obtain) a table of the 2-80 mnemonic instructions, together with a
description of their functions -~ information such as that provided in the
EDTASM nmanual, Appendix 1 contains a cryptic (but complete) list of the 2-80
instructions, including the undocumented instructions -~ all of which are
recognized by Instant Assembler 2.1.

New Features of Version 2.1

Disk Instant Assembler 2.1 is an upgrade of Disk Instant Assembler 1.1 and
will accept the source code produced by that earlier version, as well as the
source code produced by all versions of the Tape Instant Assembler. Earlier
versions of Instant Assembler may not be able to read the source code produced
by the 2.1 version, if that source code employs any of the new formatting
features of Instant Assembler 2.1.

The two most significant additions in Instant Assembler 2.1 are on-line
comments (now allowed) and full editing of source lines. Other noteworthy new
features include:

(1) True listing of decimal and negative operands.

(2) Character constants.

(3) Separate listing of internal source code errors.

(4) Output of EDTASM source to disk.

(5) Conversion of EDTASM source to Instant Assembler format.

(6) Merging of Instant Assembler source modules,

(7) Assembly and disassembly of undocumented 2-80 instructions.

(8) Disassembly and step-wise debugging that can reference the
assembler's symbol table.

Page 3

If you are familiar with an earlier version of Instant Assembler, you will
discover many more new features as you read this manual. Indeed, one of the
added features is the manual's appendices, which present in summary or tabular
form the most essential information for the successful operation of your
Instant Assembler,

What an Assembler Does
The basic task of an assembler is quite aimple: to translate symbolic
machine code (that is, assembly language) into numeric machine code (hex code).
For example, a frequently encountered 2-80 instruction is
LD A,B

which has the effect of transferring the contents of the B register to the A
register. When assembled (and loaded into memory), this instruction will reside
in a single byte somewhere in memory as the pattern of bits

0111 1000

or 78H. The assembler's role is to translate the symbolic LD A,B into the
numeric 784H. The usefulness of this function is due to the fact that it is not
at all difficult for a programmer to learn and remember the exact meanings of
several hundred instructions such as LD A,B, but it would be exceedingly
tiresome to try to msemorize a like number of purely numeric codes.

Many 2-80 instructions refer to memory locations, and some of these
locations are likely to change as a program evolves. As an example, suppose
that you have written a subroutine that clears a certain buffer, and that in an
early assembly of your program this subroutine's entry point is 8000H. Then,
the instruction

CALL B8000H

would clear the buffer. But, a later assembly of the (revised) program may
place this subroutine at 8056H, in which case all the CALL B8000H instructions
would have to be rewritten.

The solution to the problem of changeable addresses is to give these
addresses symbolic names that the assembler (or linking loader) can translate
to correct numeric values. In the above example you would give the instruction
at the entry point of the subroutine a label -- CLRBUF, let's say. Then, the
instruction

CALL CLRBUF

would clear the buffer, and you wouldn't have to concern yourself about the
actual numeric value of CLRBUF.

The use of labels (and symbols to reference the labels) can be extended to
the case in which you know perfectly well what the numeric equivalent of a
label is, but you want the instruction to be self-documenting. For example,

CALL 1C9H

will clear the video screen of any Model I or III, because there is a ROM
subroutine for this purpose whose entry point is 1C9H. But, it might be easier
to divine the purpose of the instruction if it were

CALL CLRSCR

Page X

So, we want to EQUate CLRSCR to 1C9H. 2-80 assemblers furnish a "pseudo-op" for
this purpose: EQU. The pseudo-instruction we want is thus
CLRSCR EQU 1C9H

Besides the EQU, 2-80 assemblers provide four other useful pseudo-ops:
DEFB, DEFW, DEFM, DEFS. DEFB is used to assemble a one~byte constant into a
program; examples are:

TWO DEFB 2 ;Note the' label
DEFB *'X' ;A character constant

DEFW 18 used similarly to assemble a two-byte constant (but not two character
bytes). DEFM is for assembling a atring of ASCII characters, as in
MESSAG DEFM 'Do not touch the break key.'

(Note that apostrophes are required to start and end the string.) Finally, DEFS
reserves a block of storage for use by the program; for example
BUFFER DEFS 256

will reserve 256 bytes, the first of which will be at (aymbolic) memory
location BUFFER.

The above describes the fundamental duties of. your Instant Assembler. All

other features are frills designed to save you time in the creation of perfect
programs.

Page 5

PART 1. THE ASSEMBLER

The assembler proper is the principal component of the assembler-debugger
package that is loaded under the name DSKIAS/CMD. Learning to use the assembler
requires first an understanding of its command structure. There are 37
two-letter commands, which will be fully explained in Section 1 below; they
have been divided into six subsets for clarity. (These commands are also
summarized in Appendix 2.)

SECTION 1. ASSEMBLER COMMANDS

When you load and run Disk Instant Assembler, you see a "?® (and a blinking
cursor) displayed at the left side of the screen just below the program title
line. This is the prompt for entering an assembler command. The universal rule
for the entry of any command (in the assembler, debugger, or linking loaders)
is that the entry is completed with the typing of the second letter; the ENTER
key does not have to be pressed to enter the command. If you type an
unrecognizable command, Instant Assembler will ask for the command again with
another prompt.

l1.1. Composing and Editing

At the heart of any assembler are the routines that make possible the
entering and editing of source (symbolic assembly language) code. If you have
not programmed in assembly language before, you are in for a pleasant surprise
-- typing 2-80 source code (especially with Instant Assembler) is far easier
than typing BASIC code. And, if you have found the editing of lines of BASIC a
slow and frustrating task, you should be delighted with the editing facilities
of Instant Assembler 2.1.

CP (ComPose)

Enter "CP*®" in response to the "?% prompt to commence the composition of an
assembly language program. If the source buffer is not empty, Instant Assembler
will respond "CODE ERASURE. PROCEED (Y/N)?* Either type "Y" to erase the buffer
and to proceed with composing, or else press "N" (or almost any other key) to
abort the CP command. (Instant Assembler has several protective features such
as this one; they have been tailored to be as unobtrusive as possible.)

If the source buffer is empty (as 4t will be when you first load the
program), and you enter the CP command, you will be given a blank line number 1
on which to start your program. You will also notice a vertical dbar followed by
the letter X in the lower right corner of the screen. The reason for this
display is to remind you that you are in the "X® mode, which is the normal mode
for entering source code. It is possible to leave the X mode for the purpose of
editing the line that you are entering; how to do this will be explained along
with the ED (EDit) command a bit later. Now here are the rules for entering
source code; it is recommendcd that you learn them through practice rather than
by memorization.

Page 6

(1) A composition line normally has three fields: label, opcode, operand.
Use the RIGHT ARROW key to tab to the next field; you cannot tab farther than
the operand field. Use the LEFT ARROW key to backspace and erase the previous
character, including backspacing to the previous field if necessary. Each field
is restricted with respect to the number and type of characters that it will
accept:

The label field accepts only a letter or the ampersand (&) as its
first character, only letters or digits for its subsequent
characters, with a maximum of six characters.

The opcode field accepts only letters, with a maximum of four
characters.

The operand field accepts anything (including spaces), with a
maximum of 45 characters.

It is not possible to enter more characters in a field than the field
limits just given. The ampersand as the first character of the label field is
used to designate an external label -- one whose value can be made available to
other modules by the Linking Loader.

(The information of the above paragraphs is presented in more graphic form
in Appendix 3.)

(2) An on-line comment (that is, a comment that appears on the same line as
an instruction) is entered in the operand field, following the operand (or
operands), and preceded by a semicolon (;). One on more spaces may precede the
semicolon, but they are not required. Examples of correctly entered on-line
comments are:

EXITt CALL 60H ;Time delay
JP 402DH sReturn to DOS
With the Model 1II, comments may be entered in lower case; use the lower case
(SHIFT-0) toggle, but be sure to restore the upper case mode when the comment
is completed. Don't worry about alignment of comments when entering source
lines -~ they will be aligned automatically in listings.

(3) No on-line comment is allowed with a DEFM pseudo-instruction. This is
not a severe restriction, since the DEFM is usually self-documenting.

(4) By entering a semicolon as the first character of a line, you override
the three-field format given in (1) and convert the entire line to a comment
line, with a maximum of 59 characters (including the semicolon). (This initial
semicolon cannot subsequently be erased with the LEFT ARROW key; if erasure is
necessary, use SHIFT-LEFT ARROW.)

(5) Instant Assembler does not recognize the ORG, END, or DEFL pseudo-ops.
ORG and END are supplied automatically when a program is listed or recorded.
(You may use the RO command, explained in subsection 1.6, to set or change the
origin.)

(6) Symbols follow the rules for labels -- six characters maximum, first
character either a letter or ampersand, subsequent characters either letters or
digits, Symbols may be postfixed with decimal offsets in the range of -31 to
«287, inclusive. (An offset gives the number of bytes of displacement, just as
in EDTASM.) Any other combinations involving symbols are not legal; thus, LD
HL,HOLD+42 is allowed, but LD HL,HOLD-42 and LD HL,HOLD2-HOLD1 are not. A
symbol may represent an address or a 16-bit constant, but may not be used for
an 8-bit constant; thus, JR THERE is valid, but LD A,SPACE 4is not.

Page 7

(7) Numeric constants may be entered in either decimal or hexadecimal --
though the first character must be a digit -~ and may be prefixed with a minus
sign. Hex constants and addresses must also bear the postfix ®"H", Legal entries
include:

LD A,OCFH LD HL,23586
LD B,-5 LD DE,-9

INC (IX-OBH) LD BC,0ASASH
ADD A, (IY+20) CALL 33AH

Note particularly that the increment (or decrement) to an index register may be
in either decimal or hex and must lie in the range of -128 (-80H) to +127
(+7FH), inclusive,

(8) Character constants may be used for 8-bit operands. A character
constant must be preceded and followed by an apostrophe (single quote mark).
Examples:

LD A X
cp ';'

(9) The pseudo-ops DEFB, DEFW, DEFM, and DEFS may be entered economically
by using SHIFT-1 (1), SHIFT-2 (®), SHIFT-3 (#), and SHIFT-4 (§), respectively.
This may be done either from the label field or in the first character position
of the opcode field. For example, SHIFT-1 from the label field is equivalent to
typing the sequence TAB (that is, RIGHT ARROW), *DEFB®, TAB, and places you
immediately in the operand field for entering the value of the byte. This
feature is provided for convenience in assembling tables, messages, and storage
areas,

(10) The operand for a DEFS pseudo-op is restricted to the range 1 to 4095
(decimal), inclusive. To reserve more than 4095 bytes of storage, use multiple
DEFS's. DEFS 0 is illegal.

(11) Because of the 45 character limit in the operand field, a DEFM
pseudo-op cannot define a string of more than 43 characters, since an
apostrophe (single quote) is required both to begin and to end the string. To
define a longer string, use multiple DEFM's. With the Model III, you may enter
lower case characters in a DEFM string; Jjust be sure to return to the upper
case mode when the entry has been completed.

(12) The operand for an EQU pseudo-op must be an absolute address. As
examples, HERE EQU 823BH is legal, but HERE EQU THERE+1 is not. Note
also that an EQU must have a label.

(13) All relative jumps (JR, JR N2, JR Z, JR NC, JR C, DJNZ) must refer
to symbolic target addresses. Examples of legal relative jump instructions are:

DJNZ LOOP
JR NZ,DELAY-3

Any relative jump to an absolute address will be rejected; also, Instant
Assembler does not recognize "$" as a reference to the memory location of the
present instruction. Hence, the following are illegal:

JR 502uH
JR C,$-12

Page 8

(14) If you make a real mess in entering a line and would like to have a
fresh start, type SHIFT-LEFT ARROW. You will then get a blank line with the
same line number.

(15) When a line of source code is complete, enter it by pressing ENTER.
Instant Assembler will immediately assemble it (except for a possible reference
to an as-yet-undefined label). If there is no detectable error, the instruction
is accepted and you are presented with the next line number in sequence for
continuation. To end composition, press the BREAK key.

(16) If any error is detected in an entered line of source code, Instant
Assembler will announce it with a message. Possible error messages at thic
stage are:

MISSING LABEL

ILLEGAL LABEL «- (Label is a 2-80 operand, such as "HL®,)

DBLY DFND LABEL -~ (Label has been used befaore.)

MISSING OPCODE

ILLEGAL OPCODE ~~ (Mot a 2-80 opcode.)

MISSING OPERAND

ILLEGAL OPERAND -- (Mot a 2-80 operand.)

BAD OPERAND -~ (Many possible reasons, including field overflow,
incorrect punctuation, and improper mixing of operands.)
(Backward relative jump is tqo long.)

OUT OF RNG -

Following display of the message, Instant Assembler switches to change (edit)
mode for correction of the line and positions the blinking cursor in the
offending field. How to make the correction will be explained under the ED
command, which comes next.

ED (EDit)

The ED command allows you to inspect and change as many consecutive lines
of source code as you please in one continuous operation; insertions and
deletions of lines may also be freely intermixed with the changes. To
understand the workings of this command, it is helpful to identify three
separate levels at which activities take place. For want of better names, let
us call these levels the "line"™ level, the "cursor™ level, and the "edit"
level., At the line level, a line of source code is displayed for your
inspection, but there is no cursor; Instant Assembler awaits your instructions
for the disposition of this line. If you choose to descend to the cursor level,
a nondestructive blinking cursor appears that can be freely moved about withaut
changing any characters in the field; most ordinary characters typed in at this
level are simply ignored. Finally, you can descend to the edit level, where
characters that you type are entered into the source line. Of course, it is
possible to move upward in the level hierarcy, too.

After you have entered the command ®ED" in response to the *?" prompt, you
will be asked for a "FIRST LINE#?". Type the number of the first line that you
wish to edit (or inspect), and presr ENTER. This line of source code will then
be displayed. You are now 2t the line level, and you have several options for
the disposition of the displayed line:

Page 9

UP ARROW == Press this key to back up one line. The previous line is
displayed, and you remain at the line level.

DOWN ARROW ~- Press this key to advance one line. The next line is
displayed, and you remain at the line level.

ENTER -~ Same as DOWN ARROW,

D == Press the D key to Delete the displayed line. The next line
is then displayed (with the same line number as the deleted
line), and you remain at the line level.

I -~ Press the I key to Insert a line just before the displayed
line., Descent is to the edit level (and the *X" mode) for
entering the new line.

c -~ Press the C key to Change (edit) the displayed line. Descent
is to the cursor level.
BREAK- -« Exit to Instant Assembler command level.

To clarify the action of the I key at line level, suppose that the
displayed line is line number 237. When you press the I key, you will be given
blank line number 237 on which to compose the line to be inserted. After this
line has been typed and entered (exactly as described under the CP command),
the orignal line number 237 will dbe displayed again with its line number
changed to 238. (And all following lines will have their line numbers increased
by 1 because of the insertion.) You will be back at the line level, and you
can, if you wish, use the I key again and again to insert any number of lines
ahead of the original line 237.

If you want to edit the displayed line, use the ®"C" key to descend to the
cursor level. At this level you have available several cursor motion commands:

SPACE -= Move cursor one space to the right without erasing the
character.

LEFT ARROW =~ Move cursor one space to the left without erasing the
character; move to previous field if cursor is at left end
of present field.

RIGHT ARROW == Tab to the next field.

n SPACE -= Move cursor n spaces to the right without erasing.

n LEFT ARROW -- Move cursor n spaces to the left without erasing.

In the above, n represents a one- or two~-digit number that you have typed
before the SPACE or LEFT ARROW; if you type more than two digits, only the last
two will be used. Also, the movement will not go beyond either end of the
present field (except when n LEFT ARROW is used at the left end of a field).
Once you have positioned the cursor where you want it, you may descend to edit
level in any one of the following ways:

SHIFT-D =~ Delete the character at the cursor, and return to cursor level.

n SIIIFT-D -- Delete n characters starting with the one at the cursor, but
not extending beyond the present field. Return to cursor
level,

SHIFT-1 -~ Insert characters in front of the character at the cursor.

SHIFT-C -~ Change (retype) characters starting at the cursor.

SHIFT-H -~ llack and enter; that is, delete characters from the cursor to
the end of the field, and then go into entry mode.

SHIFT=X -= Move cursor to right end of present field and go into entry
mode.

Page 10

These editing modes (as well as the cursor motion commands) are¢ nearly
identical to the ones in the LEVEL II BASIC line editor, except for the extra
SHIFT required to initiate some of them. In the entry mode (after SHIFT-H or
SHIFT-X), the LEFT ARROW erases characters as it backspaces, and the SPACE (if
it is allowed in the field) also erpses characters. In the I and C modes,
however, the LEFT ARROW does not erase characters. The I, C, H, and X modes are
continuous; that is, you remain in these modes until you either tad or
backspace to another field, or until you cancel the modes with one of these
keys:

DOWN ARROW ~-= Cancel I, C, H, or X mode and return to cursor level.
SHIFT-UP ARROW -~ Same as DOWN ARROW.

As you use the various edit modes, the display at the bottom right corner
of the screen (a vertical bar followed by a blank or a character) will change
to reflect the mode that you are in. Digits ‘typed at the cursor level will also
appear in this window; the character M is used to signify any two-digit entry
larger than nine. If you are observant, you may notice a couple of apparent
anomalies that are, however, deliberate and correct: X mode turns into H mode
when you backspace, and Instant Assembler itself initiates the X (or H) mode
whenever you tadb (forward) to an empty field or backspace to a previous field.
A little thought will convince you that the X (or H) mode is usually the
desired one in these circumstances.

If you botch the editing of a line, you can type SHIFT-LEFT ARROW to get a
blank line with the same line number for reentering the code.

When a l1ine has been edited to your satisfaction, press the ENTER key. The
revised line will then be checked for errors; if one is found, it is reported,
and you are returned to cursor level with the cursor positioned in the
offending field. When the corrected line is finally accepted, Instant Assembler
returns to line level and displays the next line of source code, except that,
if ED is used all the way to the end of the source buffer, an automatic exit is
then made to the Instant Assembler command level.

When you descend from the line level to the cursor level by pressing the
®C® key, the displayed line is immediately deleted from the source buffer to
make way for the revised line. Since it would be untidy to leave this
unintended hole in the source code, Instant Assembler will not release you from
the ED command until you have entered an error-free version of the edited line.
For this reason, the BREAK key functions exactly like the ENTER key here,
rather than effecting a return to the command level,

Though the ED command has now been fully explained, we are not finished.
The same editing facilities are sometimes used in connection with the CP
command, but the details of initiation and termination are somewhat different.

When you enter source code (with the CP command), you are normally in the X
(or H) mode. (Thus, with the CP command, you enter the editing process at the
bottom, or edit, level.) If you decide that you would like to change part of
what you have entered, use the DOWN ARROW key to ascend to cursor mode,
position the cursor, and make the change. Return to where you were working with
the TAB (RIGHT ARROW) and/or SHIFT-X keys.

NOTE: The keyboard might seem to die if you inadvertently hit the DOWN
ARROW key while in X (or H) mode. If this happens, merely type SHIFT-X to
restore normal operation.

Page 11

A line of source code that you have composed with the CP command may have
an error that Instant Assembler detects. In this case, you are thrust into the
editing process at the cursor level, with the cursor positioned in the
offending field. (Review iten (16) under the CP command.) The editing
procedures are atill the same, of course. Note, however, that you can use the
BREAK key here to escape to the command level, since no line of source code has
been deleted by the editing procedures of CP mode.

(Editing procedures are summarized in Appendix 4,)

Entering Line Numbers

The ED command and several of the commands to be descridbed later require a
starting line number. (Some of the others also require an ending line number.)
Since Instant Assembler prompts for the information that it needs, you do not
have to remember any special syntax (such as "ED:122%, or "ED,122%). Also, for
your convenience in finding lines, Instant Assembler provides three different
ways in which line numbers can be entered:

(1) As decimal numbers. This direct method requires that you know your
targeted lines by number, The listing commands (Section 1.3) can de helpful in
finding these line numbers.

(2) As labels (with optional decimal offsets in the range of -31 to +99,
inclusive). For example, asking for the line "EXIT" would cause lnstant
Assembler to find the line of source code with the label ®EXIT®". Asking for
BEXIT+10* would direct Instant AssemlLler to the line whose line number ia 10
larger than that of the line with label "EXIT". Note that the offset here is
the number of lines of offset from the specified label. This feature of being
able to address a line by its label (or label plus offset) makes it easy to
find lines in a large program if you have a rough (hand-written) copy of the
source code, or a printed listing of an earlier version of the program.

(3) By means of the current line pointer. Instant Assembler maintains a
current line pointer that contains the line number of the last line to have
been displayed on the screen (or, in some cases, the line before that one).
When a line number is requested, you may use the *." (period) key to demand the
current line. If you press the UP ARROW (or the DOWN ARROW) key, you request
the line before (or the line after) the current line.

If you use method (1) or (2) above, and if you enter a line number that is
less than 1 or larger than that of the last line in the source buffer, Instant
Assembler will respond "BAD" and ask for the line number again. The same is
true if you enter a label (or label plus offset) that does not correspond to
any line of source code.

(This material on entering line numbers is summarized in Appendix 5.)

CC (Continue Composition)

After composition has been ended with the BREAK key, it may be continued by
entering the CC command. You will be given a line number ore larger than that
of the last 1ine of code in the source buffer to continue your program. CC may
also be used to add to a source program that has been read in from disk or
tape. An auxiliary use of the CC command is to find the line number of the last
source line; when the CC command is entered, the current line pointer is set to
the number of this last line.

Page 12

1.2. Insertine, Deleting, Moving

These commands all require a starting line number; two of them (DM and MB)
also require an ending line number, and MB requires yet a third line number.
Refer to the paragraphs on Entering Line Numbers in Section 1.1 (at the end of
the ED command).

IS (InSert)

When you use the IS command, Instant Assembler will ask for a "LINE#?". The
insertion will be immediately before the line whose number you specify. For
example, if you insert at LINE# 69, the inserted line will then have the line
number 69, while previous line 69 will become line 70, previous line T0 will
become line 71, etc. After you have composed the new line (exactly as with the
CP command), it is inserted, and Instant Assembler will give you the next line
number for continued insertion. You may insert as many instructions as you
please. Use the BREAK key to exit from IS mode.

DL (Delete Line)

Use DL to delete a single line. Instant Assembler will ask for the
SLINE#?". The deleted line will be displayed on the screen to confirm the
correctness of the deletion. The line numbers of all lines following the
deleted line will be decreased by 1.

DM (Delete Multiple lines)

Use DM to delete a block of lines., Instant Assembler will ask for the
®FIRST LINE#?® and the "FINAL LINE#?® of the block in two separate questions,
These may be independently entered as decimal numbers, or labels plus offsets,
or with the current line pointer facility. The first line of the deleted block
will be displayed on the screen as a partial confirmation of the correctness of
the deletion. Multiple deletion reduces the line numbers of all lines following
the deleted block.

MB (Move Block)

Use MB to move a block of source code from one position to another. Instant
Assenbler will ask for three line numbers (with separate queries). *FIRST
LINE#?* and "FINAL LINE#?" designate the first and last lines of the block to
be moved, while ®INSRT LINE#?" is the line number at which the block will be
inserted. (It will be inserted just ahead of the line whose line number is the
INSRT LINE#.) The INSRT LINE# must either be less than the FIRST LINE# or
greater than the FINAL LINE# plus one; otherwise, you will get a "BAD® message
and a request for reentry of this line number. MB will obviously have a drastic
effect on many line numbers.

To move a block to the end of the program, first add a NOP at the end
(using the CC command), move the block to just in front of the NOP (INSRT LINE#
= %, using the current line pointer facility), then delete the NOP.

Page 13

1.3, Listing

In the listing commands, a first letter of "L" directs the listing to the
screen, while a first letter of "P* directs the listing to the line printer.
(If printer output is selected, have the printer turned on and ready.) The LL,
PL, and PR commands require one or two line numbers; enter these as explained
in Section 1.1 (at the end of the ED command).

For every screen listing command except LI, 12 (or, sometimes, 13) lines
are presented at a time for your inspection; when you are ready for the next 12
lines, press ENTER (or any key except BREAK, SPACE BAR, or UP ARROW). This
12=1lines-at-a-time progress of screen listings may bde overridden by depressing
the SPACE BAR. Holding the SPACE BAR down will cause continuous sarolling of
the 1isting; this scrolling will stop instantly when you release the SPACE BAR.
Rapid depression and release of the SPACE BAR will effect the listing of one or
two additional lines of the program. With the SPACE BAR released, ENTER will
act in its usual fashion to cause the listing of another 12 lines. When using
the LC or LL command, after a pause in the video listirg, the UP ARROW key will
cause the listing to move backward about 10 lines, so that you can review 1it.
Thus, the ENTER, SPACE BAR, and UP ARROW keys give you pin-point control of
listings to the screen,

In a listing to the line printer, Instant Assembler indents each line eight
spaces to provide a left margin for binding. After each 59 lines of printed
listing, Inatant Assembler supplies seven line feeds for pagination in the
standard (66 lines per page) printer format. The 59-counter is reset to zero
each time a new listing command is entered. The print parameters given here
(nhumber of spaces of indentation, number of lines per page), and a few others,
can be changed s0 as to produce printed output in almost any format that you
want; how to do so is explained in Appendix 6.

Any listing can be terminated by depressing the BREAK key and holding it
down for a bit.

All source code listings are assembly listings; the format is essentially
that of EDTASM, with the following exceptions:

(a) Bytes of hex code are separated by spaces for readability. (b) The
first four assembled bytes for a DEFM instruction are displayed as for other
instructions, Bytes after the fourth are not listed. (¢) The memory
addresses of all instructions except EQU's are shown at the extreme left of the
listing. No memory address is displayed for an EQU pseudo-instruction.

(It ia also possible to obtain source-only printed listings by changing certain
print parameters. See Appendix 6 for directions.)

Besides the screen listing commands described below, Instant Assembler
allows a quick listing of the current line. From the command level, press the
PERIOD key to display the current l1ine; the UP ARROW and DOWN ARROW keys
function similarly to 1ist either the line before, or the line after, the
current line. This current line listing facility also has an extension: By
holding down the SPACE BAR before pressing the PERIOD, UP ARROW, or DOWN ARROW,
you can cause 14 lines to be listed, ending with the current line, its
predecessor, or its successor.

Page 14

LC (List Completely)

LC causes a complete listing to be posted to the screen (with a pause after
each 12 lines unless the SPACE BAR is held down). A complete listing consists
of the ORG line (supplied by Instant Assembler), the assembled source code
(with an error message at the right end of each line in error), the END line
(also supplied by Instant Assembler), the error count, and the symbol table.
The symbol table is in alphabetic order and is printed four symbols to a line
for compactness. The poassible error messages in a listing are just these two:

®8Q0R®® (Out Of Range .~- relative Jjump is too long.)

*8yDSe® (UnDefined Symbol.)

(A source line may require two lines of listing. In this case, if an error
message is also required, it will appear at the right end of the second line.)

NOTE: If you use the UP ARROW key with the LC command to review the
listing, errors that are passed over will be counted again in the forward
listing, so that the final error count may be too large.

PC (Print Completely)
PC 18 like LC, except that the output is to the line printer.

LL (List to the Last line)

After the LL command is entered, Instant Assembler will ask for a "FIRST
LINE#?%, Respond with the line number (as a decimal, label plus offset, or
current line) of the first line to be listed. The listing will commence there
and continue (with a pause after each 12 lines) to the last source line, or
until the BREAK key is used to terminate the LL command. No symbol table will
be listed.

PL (Print to the Last line)
PL is l1ike LL, except that the output is to the line printer,

PR (Print a Range of lines)

After the PR command is entered, Instant Assembler will ask for & ®FIRST
LINE#?® and a "FINAL LINE#?". These are the numbers of the first and last lines
of source code to be listed, and may be entered independently as decimal
number, label plus offset, or current line. Output is to the line printer.

LI (List Internal errors)

All ®S8QOR®*® (Out Of Range) errors, all undefined internal symbols (those
not commencing with "&"), and all relative jumps to undefined external symbols
are internal errors. It is essential to correct a module's internal errors
before employing the Linking Loader to link it to other modules. The LI coamand
makes it easy to find and correct all internal errors in your program.

When the LI command is entered, Instant Assembler will display the first
source line that has an internal error and then pause. (This pause is at the
"line* level, as described under the ED command.) You now have three choices:

Page 15

(a) BREAK will return you to Instant Assembler command level, (b) Either
DOWN ARROW or ENTER will cause Instant Assembler to find and display the next
source line that has an internal error. (c) Pressing the "C"™ key opens the
displayed line for editing -- exactly as with the ED command. (The *C*® key
causes a descent to the cursor level.) When the editing is completed (by
pressing ENTER), and the edited line is accepted, Instant Assembler will find
and display the next source line that has an internal error.

After the last 1line with an internal error has been disposed of, the count of
internal errors will be displayed; this count will be zero if there were no
such errors to begin with,

PI (Print Internal errors)
The PI command causes all source lines with internal errors to be listed on
the line printer, with a count at the end.

LE (List External undefined symbols)

LE causes all external undefined aymbols to be listed to the screen; they
are listed in alphabetic order, eight to a line. Each symbol is listed only
once, even if it occurs several times in your progranm.

External undefined symbols may not be actual errors, since they may
correspond to labels in other modules. The LE command allows you to check that
no typographical errors have been made in these symbols. If real errors are
discovered, the FR command (Section 1.6) can be used to locate and correct them
painlessly.

PE (Print External undefined symbols)
PE is 1ike LE, except that the output is to the line printer.

LS (List Symbola)

LS causes the symbol table to be listed to the screen. This listing is in
alphabetic order, four symbols to a8 line. (External symbols are listed first.)
The defined value of each symbol is displayed next to the symbol. (Actually,
what is listed is a label table. Undefined symbols are not listed.)

PS (Print Symbols)
PS is like LS, except that the output is to the line printer.

Page 16

J.4. Tape Input/Qutput

In all its tape input/output functions lnstant Assembler prompts for the
items of information (titles, addresses) that it needs. Any tape command can be
aborted by pressing the BREAK key in response to a request for information. In
the Model III, all tape commands of Instant Assembler set the cassette speed to
500 baud to ensure reliable recordings and to allow necessary processing during
loading.

WS (Write Source)

The WS command is used to record a source tape (in Instant Assembler
format) of the program in the source buffer. After the WS command is entered,
you will be asked for a "TITLE?®. The title is restricted to 6 characters, the
first of which must be a letter; subsequent characters must be either letters
or digits. Have the tape ready for recording, with the PLAY and RECORD keys of
the cassette depressed. As soon as you press ENTER after typing the title, the
recording will begin.

VS (Verify Source)

After recording an Instant Assembler source tape with the WS command,
rewind the tape and use the VS command to verify it. (Have the tape ready for
reading before entering the VS command.) VS requires no arguments and returns
either "GOOD"™ or "BAD" in reporting on the verification. In case of a "BAD"
verify, try adjusting the volume before repeating the VS command; as a last
resort, record the program again and verify it.

RS (Read Source)

The RS command causes a source tape (recorded in Instant Assembler format
with the WS command) to be read into the source buffer for editing, assemdling,
or debugging. (This source code will replace any that is already in the
buffer.) If the source buffer is empty when you type the RS command, Instant
Assembler will ask for a "TITLE?®; when this has been entered, the tape will be
read. If the source buffer is not empty when you enter the RS command, Instant
Assembler will respond "CODE ERASURE. PROCEED (Y/N)?". If you decide to proceed
with the source input, type "Y"; you will then be asked for a "TITLE?". (The
title is restricted to six characters, the first of which must be a letter,)
Have the tape ready for reading as you complete the entry of the title. Instant
Assembler will report on the read with either a *GOOD"™ or a "BAD"™ message. In
case of a "BADY read, rewind the tape and try again (perhaps adjusting the
volume before the second try,)

WO (Write Object)

The WO command is used to record an object tape (in SYSTEM format) of the
program in the source buffer. After the WO command is entered, you will be
asked for a "TITLE?", an "ORIGIN?", and an “ENTRY ADDRESS?*. (The entry address
is the point at which the program will be entered after a SYSTEM load and a
response of "/" to the following "#2" prompt.) When the entry address has been
entered, recording will commence. (Caution: have the cassette ready for
recording, for the completion of this entry may not require pressing the ENTER
key.)

Page 17

The origin and entry addresses may be independently entered in any of the
following ways:

(a) By default to the value of the source code origin, as set with the RO
command and as displayed at the beginning of a listing with the LC command. To
request this default value, merely press the ENTER key in response to the
address query. (b) As a hexadecimal address. For this mode, enter the
address as four (or fewer) hexadecimsl digits. Do not enter a zero in front of
a leading A, B, C, D, E, or F. Do not type "H" at the end of the entry. (c)
As a decimal address. For this mode, enter five (no fewer) decimal digits. Pad
with leading zeroes to make up the required five digits. (This will not usually
be necessary, since nearly all programs will have origins above 10000 decimal.)

(Methods (b) and (o) are used throughout the Instant Assembler package for the
entry of addresses, Appendix 5 repeats this information.)

NOTE: Object code recorded with the WO command is in one contiguous block;
there are no skips for DEFS pseudo~ops. In fact, a DEFS instruction causes the
specified number of bytes to be recorded as zeroes on the object tape.

WE (Write Edtasm source tape)

The WE command is for recording a source tape (of the program in the source
buffer) that can be read and edited by EDTASM. You will be asked for a "TITLE?"
and an "ORIGIN?®; recording commences as soon as the latter is entered. (The
origin can be entered in any of the thfee ways described under the WO command.)
The 1ine numbers for a source tape produced with the WE command start with
00000 (for the ORG line) and proceed in steps of 10.

RE (Read Edtasm source, translate, and merge)

The RE command allows you to translate EDTASM source tape to Instant
Assenmbler format. You will be asked for a "TITLE?"; after this has been
entered, the entire EDTASM tape will be read into RAM above Instant Assembler's
source buffer. (If this code is too extensive to fit into your memory, reading
will halt with an "OUT OF MEM® report.) With the EDTASM source in memory,
translation commences; each source line is displayed on the screen, translated,
and added to Instant Assembler's source buffer. If an error is detected in a
line, translation is interrupted, an error message is posted, and a blinking
cursor appears in the offending field. (You are at the cursor level in the
editing process.) Make the necessary correction in the line, press ENTER, and
the translation and merging will continue.

NOTES: (1) The new source code is added to any code already in the source
buffer; if you want to clear out the buffer before translating an EDTASM tape,
use the CP command, answer *"Y" to the "CODE ERASURE. PROCEED (Y/N)?" query,
then press BREAK.

(2) Use of the BREAK key at any time in the translation process (including
during an edit) will terminate the operation. If you use tbe SHIFT-LEFT ARROW
while editing a line, that line will be deleted from the translated source
code.

(3) The ORG and END lines of the EDTASM source are translated as comment
lines in the Instant Assembler source.

Page 18

(4) Since some EDTASM lines do not permit direct translation to lnstant
Assembler format, a bit of ingenuity will occasionally be required to complete
the operation. For a tough problem like LD BC,END-BEG+1, you may have to make
a temporary change (to allow the translation to proceed), note where this line
‘occurs, and return to it for a more conscientious edit when the translation has
been completed. (For a number of suggestions on how to make these edits, refer
to Appendix 8.)

1.5, Disk Input/Qutput

In all its disk input/output functions Instant Assembler prompts for the
items of information (file names, addresses) that it needs; it also provides
protective mechanisms to minimize the chance of inadvertent erasure of either a
disk file or the source buffer. Any disk command cen be aborted by pressing the
BREAK key in response to a request for information. A blinking asterisk appears
in the upper right corner of the screen during disk transfers. If any error
occurs, the diagnostic message supplied by DOS is displeyed, and Instant
Assembler then allows you either to repeat or abort the operation.

0S (Output Source to disk)

To save source code (in Instant Assembler format) on disk, enter "0S® in
response to the "?* prompt. You will then be asked for a "FILE NAME?®". Enter
this name in standard file specification format, including extension and drive
number. (It is a good practice to designate your source code files with their
own reserved extension, such as ®SRC".) After the file name has been entered,
DOS will be requested to open the file. If no file with this name exists on the
disk, the file will then be initialized, the legend "NEW FILE." will be
displayed for your information, and the source code will be recorded and
verified.

If a file already exists on the disk with the file name that you entered,
Instant Assembler will respond, "FILE REWRITE. PROCEED (Y/N)?%". Type ®Y" here
to proceed with rewriting this file, or else type "N* (or almost any other
character) to abort the 0S command.

IN (INput source code from disk)

The IN command causes a source file (previously recorded using the 0S
command) to be read from disk and placed in the source buffer for editing,
assemdbling, or debugging. (This source code will replace any that is already in
the buffer.) If the source buffer is empty when you enter the IN command,
Instant Assembler will ask you for a *FILE NAME?" and then transfer the source
code from this disk file. If the source buffeer is not empty when you enter the
IN command, Instant Assembler will respond "CODE ERASURE. PROCEED (Y/N)?"; you
then have an obvious choice of proceeding with or aborting the input request.
If you proceed, the source buffer will be erased, and you will then be asked
for a "FILE NAME?",

Page 19

MG (MerGe source code from disk)

The MG command allows you to merge Instant Assembler source modules. You
will be asked for a "FILE NAME?"; after this has been entered, the entire
Instant Assembler source file will be read into RAM above the source buffer.
(If this code is too extensive to fit into your memory, reading will halt with
an "OUT OF MEM" report.) With the new source file in memory, merging commences;
each line is displayed on the screen and added to Instant Assembler's source
buffer. If a detectable error is encountered, merging is interrupted, an error
message 1s posted, and a blinking cursor appears in the offending field. Edit
the error, make a note of where it was, preas ENTER, and the merging will
continue. (An error in merging is either a doubly defined label or an out of
range relative jump to an earlier label that is about to be doubly defined.
Change the second occurrence of the label, then, after the merging is complete,
you may use the FR command to find all references to the old label and change
the appropriate ones among these to refer to the new label.) The BREAK key may
be used at any time to terminate the merge operation. SHIFT-LEFT ARROW, used on
a line with an error, will delete that line.

00 (Output Object code to disk)

The 00 command is used to record (on disk) an assembled vesion of the
program in the source buffer. This recorded program is in standard disk object
format, ready to be loaded and executed from DOS. To use the command, type "00"
in response to the "?" prompt. You will then be asked for a "FILE NAME?*, an
"ORIGIN?", and an "ENTRY ADDRESS?". The origin and entry address may be entered
in any of the three ways that are given under the WO command (Section 1.4.) and
in Appendix 5. When all this information has been entered, DOS will be
requested to open the file. Depending upon the outcome of this request, Instant
Assembler will report "NEW FILE." (followed by transfer of the object code to
disk) or *"FILE REWRITE. PROCEED (Y/N)?". In the latter case you then have a
choice of continuing or aborting the operation.

NOTE: Object code recorded with the 00 command is in one contiguous block;
there are no skips for DEFS pseudo-ops. In fact, a DEFS instruction causes the
specified number of bytes to be recorded as zeroes in the object file.

OE (Output Edtasm source to disk)

The OE command is for recording (on disk) a source file that can be read
and edited by disk EDTASM. After entering this command, you will be asked for a
*FILE NAME?" and an "ORIGIN?", Enter the origin in any of the three ways given
under the WO command and in Appendix 5. When this information has been entered,
DOS will be requested to open the file. Depending upon the outcome of this
request, Instant Assembler will report "NEW FILE."™ (followed by tranafer of the
source file to disk) or "FILE REWRITE. PROCEED (Y/N)?". In the latter case you
then have a choice of continuing or aborting the operation.

The line numbers for an EDTASM source file produced with the WE command
start with 00000 (for the ORC line) and proceed in steps of 10. The source file
is normally recorded with six initial ASCII spaces (a dummy title), which seems
to be the format that is expected by most disk versions of EDTASM. It is
possible, however, to suppress these six characters in the recording if your
Disk EDTASM doesn't accept them; how to do so is explained in Appendix 6.

Page 20

IE (Input Edtasm source, translate, and merge)

The IE command functions exactly like the RE command (Section 1.4), except
that you are asked for a "FILE NAME?* (instead of a "TITLE?®), and the input is
from disk. Refer to the RE command for a complete description of this
operation. :

While Instant Assembler is a complete assembly system, the OE and IE
commands have been provided so that you may use it in conjuction with EDTASM.

1.6, Miscellaneous

AM (Assemble-to-Memory)

The AM command permits you to assemble a source program directly into
memory. Once assembled, the program may be debugged with the debugging
subsystem (MicroMind). After the AM command has been entered, Instant Assembler
will respond “1ST FREE MEM: XXXX®, where the XXXX is the hexadecimal address of
the first memory location avajlable for the assembly. You will then be asked
for an "ORIGIN?®, which may be entered in any of the three ways that are given
under the WO command (Seotion 1.4.) and in Appendix 5. This origin must be at
least as high as the number announced in the 1ST FREE MEM report; otlierwise,
Instant Assembler will respond *"BAD® and ask for the origin again. Also, the
origin must be low enough to allow the assembly to take place in the remainder
of RAM; if it is not, Instant Assembler will reply "OUT OF MEM®" and ask for the
origin again.

When the assembly is finished, the total number of errors encountered will
be reported. Also, the address that you entered in respose to the "ORIGIN?"
request will now be the origin af the source code; thus, if you list the
program, the listing will correspond exactly to the assembled program.

RO (Reset Origin)

Use the RO command to define (or redefine) the origin of the source
program, After the RO command is entered, you will be asked for an "ORIGIN?",
Enter this in either decimal (five digits) or hexadecimal (four or fewer hex
digits) -- see Appendix 5.

FR (Find References)

The FR command enables you to find (and edit, if you choose) all
instructions in the source program that reference any specified symbol. Instant
Assembler responds to the FR command with the query "FIND?®. Answer this by
entering any symbol that is in the source code. (If you enter a nonexistent
symbol, Instant Assembler will merely repeat the *FIND?" question.) Instant
Assembler will then display the first source line that references this symbol.
The pause that follows (which is at the "line" level, as descridbed under the ED
command) gives you three options:

(a) BREAK to return to Instant Assembler command level. (b) DOWN ARROW
or ENTER to find and display the nexlL source line that references the specified
symbol. (c) "C" to open the displayed 1ine for editing -~ exactly as with
the ED command.

Page 21

After the 1ine has been edited (assuming the "C" option was exercised), Instant
Assembler will find and display the next line that references the specified
symbol. After the last line containing such a reference has been disposed of,
Instant Assembler will ask for another symbol by repeating the °*FIND?"
question. Use the BREAK key to terminate the FR mode.

DI (DIrectory)

The DI command allows you to view a diskette directory without leaving
Instant Assembler. This command functions under four operating systems: NEWDOS
80, DOSPLUS 3.8, Model III TRS-DOS, and Model III LDOS 5.1. As it comes to you,
the DI command is set to work with Model III TRS-DOS; how to change it to work
with another operating system is explained in Appendix 6.

After entering the DI command, you will be asked for a "DRIVE #?". Respond
with ®g®, «qe, wo%. or *"3", as appropriate. The directory will then be
displayed. (With Model III TRS-DOS, only the names of the first 48 files on the
disk will be shown.)

KL (Kx4ilL)

The KL command permits you to kill a file without leaving Instant
Assembler. After typing the command, you will be asked for a "FILE NAME?". When
this has been entered, Instant Assembler will reply "KILL. PROCEED (Y/N)?*.
Either type *Y® to kill the file or "N™ to abort the KL command.

£X (EXit to DOS)
Use the EX command to exit safely to DOS.

MD (transfer to microMinD)
Use the MD command to transfer control to MicroMind -~ the debugging
subsysten of Instant Assembler.

Page 22

SEC

Load and run Instant Assembler, and enter the CP command. Then compose the
following source code. (Line numbers are furnished by Instant Assembler, of
course.)

0001 ;HEX-TO-DECIMAL CONVERTER == PART 1

0002 &BEGIN CALL 1C9H ;CLEAR SCREEN

0003 LD HL,3C14H

0004 LD (4020H) ,HL

0005 LD HL,TITLE

0006 CALL &VIDOT sDISPLAY TITLE

0007 CALL &CARET

0008 INPLP CALL &CARET

0009 LD HL, HEXNM

0010 CALL &vVIDOT sDISPLAY PROMPT
0011 CALL &KBINP sTAKE INPUT

0012 LD HL, &BUFFR

0013 CALL &CONVT $CONVERT TO BINARY
0014 JR C, INPLP ;IF ENTRY IS BAD
0015 LD A, (4020R)

0016 AND OCOR

0017 ADD A, 11

0018 LD (4020H) ,A ;TAB 11 SPACES
0019 LD A, <Y

0020 CALL 33AH ;DISPLAY THE <!
0021 LD A,20H

0022 CALL 33AH sTAB 1 SPACE

0023 EX DE, HL sBINARY NUMBER IN HL
0024 CALL O0A9AH $SET TYPE FLAG
0025 XOR A

0026 CALL 1034H

0027 OR (HL)

0028 CALL. OFD9H sCONVERT TO DECIMAL
‘0029 LD HL,4131H

0030 CALL &VIDOT ;DISPLAY DECIMAL NUMBER
0031 JR INPLP

0032 TITLE DEFM 'HEX-TO-DECIMAL CONVERTER'

0033 DEFB 0 sMESSAGE TERMINATOR
0034 HEXNM DEFM ‘'HEX#? °

0035 DEFB 0

0036 ;

0037 ;PART 2 -~ VIDEO OQUTPUT AND CONVERSION ROUTINES
0038 &VIDOT LD A, (HL) sNEXT CHARACTER
0039 OR A

0040 RET 2 ; IF TERMINATOR

oou1 CALL 33AH sPOST TO SCREEN
0042 INC HL

0043 JR &VIDOT

0044 &CARET LD A,ODH s CARRIAGE RETURN
oous JP 33AH

0046 &CONVT LD DE,0 ;INITIALIZE ACCUMULATOR
0047 NXTHX PUSH HL sSAVE POINTER

0048 EX DE, HL

Page 23

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
006 4
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

DIGIT

;
;PART 3
SKBINP

POST

NXTCH

BKSPC

CRET

&BUFFR
DOS

ADD
ADD
ADD
ADD
EX
POP
LD
SUB
RET
Ccp
JR
SuB
RET
cp
CCF
RET
OR
LD
INC
DJNZ
RET

HL, HL

HL, HL

HL,HL

HL,HL

DE, HL :DE MULTIPLIED BY 16
HL ; POINTER

A, (HL) {NEXT HEX DIGIT
30H

c ;BAD ONE

10

c,DIGIT ;IF 0-9

7

c ;BAD ONE

16

Cc +BAD ONE

E

E,A sADD TO DE
HL

NXTHX

~=- KEYBOARD INPUT ROUTINE

LD
LD
LD
CALL
LD
cp
JR
CALL
LD
cp
JR
cp
JP
cp
JR
INC
INC
JR
LD
OR
JR
LD
DEC
DEC
JR
LD
JP
DEFS
EQU

B,0 s INITIALIZE CHAR COUNT
HL, $BUFFR

A, 14 ;TO TURN CURSOR ON
33AH

A,B

4

2,CRET ;IF LIMIT IS REACHED
49H ;GET NEXT CHARACTER
(HL),A ;PUT IN BUFFER

ODH

2,CRET ;{IF ENTER KEY

3

z,D0S ;IF CLEAR KEY

8

2, BXSPC ;IF LEFT ARROW KEY
HL

B ; INCREASE COUNT

POST

A,B

A

2, NXTCH ;IF NO CHARS ENTERED
A, (HL)

HL

B ;BACK UP 1 CHAR

POST

A, 15 ;TO TURN CURSOR OFF
33AH

"

K02DH

Page 24

In entering the above program you may need to refer frequently to the
procedures detail ed under the CP command in subsection 1.1 of Section 1. When
you have finished, you will have obtained a working knowledge of most of these
procedures. (Did you use SHIFT-1, SHIFT-3, SHIFT-4 for DEFB, DEFM, and DEFS?)
The.on-line comments do not have to be aligned when you enter them; they will
be aligned automatically in all listings. Also, if you have ®a Model I1l1I, you
could enter the comments in lower case.

After the last line has been entered, press the BREAK key and type "LI%. If
you have done your work correctly, you should get the response, "ERR COUNT:
000". (If not, you may edit the error lines one at a time as they are
displayed.) Then type "LE* to check that there are no external undefined
symbols. Next, type "LS" and take a look at the symbol table:. Note that the
values of the symbols are low because an origin of 0 has been assumed for your
program. You may use the RO command to change the origin to anything you wish.
Now type ®"LC® and use the ENTER key to go through the entire source program 12
lines at a time, checking it carefully against the above listing. If you have a
printer, turn it on, make it ready, and enter the PC command to obtain a
printed listing of the program.

Now use the OS command to make a disk file of this program for later use.
Give it the file name *HDCONV/SRC®. Then, with the DM command, delete lines
"$VIDOT-2" through "DOS"., If you have done this correctly, only lines 1-35 (and
the ORG and END lines) will remain, and there will now be eight *#sypstew
errors in the residual program. Since all these errors are references to
external labels that will ultimately be resolved by Linking Loader, they are
acceptable. Make a disk file of this segment of the program (with the 0S
command), giving it the file name "HDCNV1/SRC".

Next, use the IN command to read the HDCONV/SRC file. (You will have to
override the source buffer protection feature to do this.) With the original
program in the source buffer again, delete (with the DM command) lines 1
through "HEXHM+2® and lines "&KBINP-2" through ®DOS®, retaining Part 2 of the
program. (Part 2 by itself should show no errors when listed.) Make a source
file of this segment, using the title "HDCNV2/SRC". Finally, load the
HDCONV/SRC file once more (with the IN command), delete lines 1 through
"¢KBINP-2%", and make.a source file of Part 3 (which also should have no
errors), giving it the title "HDCNV3/SRC®. Save these four disk files for later
practice with MicroMind and Linking Loader.

By this time you have exercised many of the commands of Instant Assembler.
To practice using the rest of the commands, read in the HDCONV/SRC file again.
Enter the AM command, answer the ®ORIGIN?" query with ®"9000%, and press ENTER.
Your program will be assembled into memory starting at 9000H, and Instant
Assembler should report "ERR COUNT: 000". Transfer to MicroMind by typing "MD",
Then enter the JP command, respond to the query ®"ADDRESS?" with *9000", and
press ENTER., Your hex-to-decimal converson program will now execute. cnter any
hex number of up to four digits (pressing ENTER if the number of characters is
less than four), and the number will be instantly converted to its decimal
equivalent, When you tire of this, press the CLEAR key, and control will be
transferred to DOS. From there you may reenter Instant Assembler by typing
“IASTRF* and pressing ENTER. You will find the source buffer intact.

If you wish, you may make an object file of the hex-to-decimal converter.
Use the 00 command, and give it a file name of "HDCONV/CMD®, an origin of 9000H
(press ENTER for the default origin), and an entry point of 9000H (also by
pressing ENTER in response to the query). Later, you can load and execute this
file from DOS. Also, you may make an EDTASM source file with the OE command;
save this for later review when you have EDTASM in your computer.

Page 25

To see how the block move command operdtes, type *MB®", and then move Part 3
of the program to just in front of Part 2. (FIRST LINE# = &KBINP-2, FINAL LINE¢
= DOS, and INSRT LINE# = HEXNM+2.) Next use the FR command to find all lines
that reference the "&VIDOT® label. End this session with Instant Assembler by
practicing inserting (I1S), deleting (DL), and editing (ED).

(Since you may be interested in the inner workings of the hex-to-decimal
converter, a few words are in order to clarify some of its more mysterious
instructions. The program uses several ROM subroutines; otherwise, it would be
ouch longer than it is. The ROM subroutine at 1C9H clears the screen. The one
at 33AH displays a character at the cursor position and updates the cursor. The
subroutines at 0A9AH, 1034H, and OFD9H act to convert a 16-bit binary number to
a string of decimal digits. The subroutine at 49H scans the keyboard and
decodes the input characters. Locations 4020H-4021H contain the address of the
video memory cell in which the cursor resides. Any remaining mysteries could be
solved by using MicroMind to step through the program.)

Page 26

SECTION 3, INSIDE INSTANT ASSEMBLER

This section is a collection of tidbits and hints -~ information about your
assesbler that you will eventually want to have.

(1) Whenever you want to exit to Instant Assembler's command level, use the
BREAK key. The only time that this won't work is when you are editing a source
line, in which case BREAK acts like ENTER.

(2) 'The line number of any instruction -- instead of being fixed as it is
in EDTASM -~ is determined by the relative position of the instruction in the
source buffer, which may change as a result of insertion, deletion, or block
movement. This implicit line numbering has several advantages over fixed line
numbering. For one thing, it allows continuous insertion of new lines without
periodic interruptions for renumbering. Also, the block movement command is
ouch easier to implement with implicit line numbering. And -- not least --
implicit line numbering saves a great deal of space in the storage of the
source code. Of course, there are some disadvantages, too. One of these shows
up when you want to delete two or more nonadjacent lines of code. For exaumple,
suppose that you wish to delete lines 69 and 85; if you first delete line 69,
you will find that the other line is now number 84. One way to handle this
problem is to delete from the top down. (In the example, delete line 85 first.)
Another way is to address each line by its label (plus offset); in fact, this
ability to address a line by its label (plus offset) frees you from dependence
upon absolute line numbers, As a last resort, you can always find the
up-to-date line number of any instruction by using the LL command.

(3) There are limits to the size of a source module that can be
constructed. The first limit is imposed by memory size. If you run out of
wmemory while composing a program, Instant Assembler will report "OUT OF MEM"
and exit to command level. Another limitation is that the total number of
symbols may not exceed 1024. If a pewly entered symbol would exceed this limit,
composition is halted with a "SYMB OVF" (symbol overflow) message. The final
constraint is that your program's length should not exceed 32768 bytes (of
object code). The only possible way that this limit could be exceeded before
you run out of memory is for you to reserve a great amount of atorage (with
DEFS's) in your program, Instant Assembler provides no protection against this
most unlikely overflow; you are responsible for seeing that it doesn't happen.

(4) Deletions from Instant Assembler source code do not result in deletions
from the symbol table of that source code. If a module goes through many
revisions, it may collect a number of dead symbols in its table. Since these
dead symbols still apply to the 1024 limit of (3) above, it might be desirable
at some time to purge the symbol table. This can be done by merging (with the
MG command) the source module into an empty source buffer.

(5) When a listing to the screen pauses after 12 lines, you are still in
listing mode, If you wish to edit one of the displayed lines, press BREAK (or
almost any other key) before typing the ED command.

(6) If you want to move a line that has a label, either use the MB command,
or else delete the line before reinserting it. An attempt to insert the line
before it is deleted will result in a "DBLY DFND LABEL® error.

(7) For the most part, numeric constants are listed in the same form in
which you enter them. However, there are a few exceptions. All index register
offsets are listed in decimal., The operand of any RST instruction (if greater
than 8) is listed in hexadecimal. All 16-bit hex values are listed with four or
five hex digits; thus, CALL 60H is listed as CALL O0Q060H. (This quirk is at
the request of Bryan Mumford,) 8-bit hex constants are listed without
unnecesssary leading zeroes, however,

Page 27

(8) Origins and entry addresses entered in hexadecimal do not require a
terminating H or a leading zero. This feature is for your convenience.

(9) When the source buffer is empty, the message "NO CODE"™ will be
displayed in response to any command that would operate on the source code.

(10) External labels are those that commence with an ampersand. You may use
them whenever you feel like it; all your labels may be external if you choose.
However, you need to use them only if the program module that you are composing
will be loaded together with other modules that reference it. Then, every
instruction and storage location in this module that will be referenced by
another module must be given an external label. Later, Linking Loader will be
able to assemble and 1ink all the modules. (Linking Loader does not check for
doubly defined external labels, so you must be careful that you use each
external label in only one module. Any nonexternal label may be used in as many
modules as you please.)

(11) An instruction like LD HL,STORE+512 4is not accepted by Instant
Assembler because of the size of the offset. To construct an equivalent
instruction, simply use another label closer to the target address. (A DEFS
instruction ahead of the new label may be necessary for correct positioning.)

(12) An tnstruction like LD BC,END~-BEG+1 presents a harder prodlem, and
may require the expenditure of a few additional bytes of code. The following
coding will always suffice, and may be shortened (by deleting the PUSH and POP)
if the HL register pair is free at the time.

PUSH HL

LD HL,END#1
LD BC,BEG
OR A

SBC HL,BC
LD B,H

LD C,L

POP HL

(13) Although Instant Assembler does not permit the use of symbols to
represent 8-bit values, there is usually an easy way around this limitation,
too. A typical example of the use of an 8-bit symbol is the following:

OUT PORT1,A

with the symbol PORT1 defined by means of an EQU. (The purpose of this is to
make it easy to change all port numbers by changing one EQU.) The following
Instant Assembler-compatible code will accomplish the same objective:

DEFB OD3H s ®OUT*® INSTRUCTION

DEFW PORT1 ; PORT NUMBER

The 16~bit value for PORT1 (established by an EQU) will have a high-order byte
of zero, which is a NOP to the 2-80.

(14) Instant Assembler has been carefully designed to make it difficult for
you to wipe out the source buffer inadvertently. If you want to do this
deliberately, use the CP command, respond "Y" to the ®CODE ERASURE. PROCEED
(Y/N)?* query, then press BREAK.

(15) If your printer has trouble working with Instant Assembler, or if you
would like to change the format of printed listings, make a careful study of
Appendix 6. Then, try changing some of the print parameters.

Page 28

(16) When Instant Assembler prompts you for information (FILE NAME?,
ORIGIN?, etc.), it does not permit you to enter more characters than the
paximunm number that any correct answer could use. If you enter this maximum
number of characters, Instant Assembler will immediately analyze your response;
you do not have to press the ENTER key in this case. Exception: Your answer. to
the "TITLE?® query must be completed by pressing ENTER.

(17) The upper and lower halves of the IX and 1Y registers can be
independently addressed through a number of undocumented 2-80 instructions.
These half-registers are given the names IXH (IX high), IXL (IX low), IYH, and
IYL. Por example, CP IXH 48 a two-byte instruction that compares the A
register with the upper eight bits of the IX register. The instruction forms in
Appendix 1 that contain the symbol "x® as an operand correspond to the
undocumented instructions. Instant Assembler will recognize and assemble any of
these forms. These intructions provide you with four additional 8-bit
registers, with an overhead charge of one extra byte of object code per
instruction.

(18) Instant Aasembler source code is closer to object code than it is to
text. The actual format is as follows: Each instruction is preceded by a
bit-encoded header byte that contains information about the type and length of
the instruotion, whether the instruction has a label, whether it references a
symbol, and whether an extension byte is needed to provide further information.
This header byte is followed by the object code for the instruction, except
that a symbolic address is represented by the number of the symbol (that is,
its position in the symbol table) rather than the value of the symbol. If an
extension byte 1s needed, it faollows the object code. An extension byte may
contain an extension of the symbol offset, format information for liating the
instruction, and a flag to indicate an on-1line comment. Any on-line comment
then follows the extension byte (headed by a byte giving its length). In
addition to the code structure just outlined, Instant Asseabler source also
contains a symbol table. Each symbol is kept in 10 consecutive bytes of the
table; six of these bytes hold the actual characters of the aymbol, two bytes
contain the value of the symbol, and two bytes serve as a linked 1ist pointer
to the next symbol in alphadbetic order. The ®"value® of a symbol == other than
an EQUated symdol == is its offset from the origin of the source code module.

(19) If at any time you find yourself back in DOS and want to return to
Instant Assembler without destroying the source buffer or resetting the memory
protection (in SAFEH-5AFFH), merely type "IASTRF® and press ENTER. IASTRF
employs the nondestructive reentry to Instant Assembler at 5BO3H, an address
that you may use from any other program that has a transfer capability.

Page 29

PART 11. THE DEBUGGER

Instant Assembler's debugger is named MicroMind, and it is supplied in two
forms. The integral MicroMind is contained within the DSKIAS/CMD package and is
reached via the MD command from the assembler subsystem, The stand-alone
MicroMind is the MICROM/CMD file on your diskette. The two versions are
identical except for a few commands and the relocating feature of stand-alone
MicroMind. The command differences are treated in Sections 4.4 and 4.5, and the
procedure for relocating stand-alone MicroMind is explained in Section 6, item
(1).

SECTION 4, MICROMIND COMMANDS

MicroMind has 21 two-letter commands, which will be fully explained in this
section. (They are also summarized in Appendix 7.) As in the assembler
subsystenm, response to your command follows immediately upon typing the seco<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>